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Stochastic resonance on a circle without excitation: Physical investigation
and peak frequency formula
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In this article the existence of stochastic resonance~SR! without external force in a simplified circular
system for different values of the control parameterb is considered. The average power spectra are calculated
as well as the signal-to-noise ratio as a measure for stochastic resonance. It is shown that in the monostable and
semistable (b,1 andb51) cases coherent oscillations occur and SR exists. For the caseb.1, the system is
oscillatory and noise plays only a destructive role; therefore no SR occurs. The rotation number of the system
is calculated and compared to the peak frequency of the power spectrum. Although the coincidence in the noisy
case is not as good as that in the deterministic case, we can derive an empirical formula between the peak
frequency of the power spectrum and the rotation number of the system, which is in good agreement with
results of numerical simulations.

PACS number~s!: 05.40.2a
a
e
io
Th
bl

a

n
-
co
co
SR

-

at

nit

we

tion

-

d

o

r

ese
of

is
ur-

f a
ect
I. INTRODUCTION

Research concerning stochastic resonance~SR! has
aroused more and more interest recently in both physics
nonlinear science~see reviews@1,2#!. Stochastic resonanc
means that the response of a nonlinear system to a per
signal may be enhanced by an optimal amount of noise.
models investigated in the literature were mainly bista
ones with extra periodic driving forces@3–13#. Recently,
some authors found that pure noise could also lead to a m
mum signal-to-noise ratio~SNR! at a certain critical noise
strength. This phenomenon is called stochastic resona
without excitation@14,15#. After considering the SR phe
nomenon in bistable systems without excitation, Hu and
workers investigated a system that was not bistable and
cluded that bistability was not a necessary ingredient for
In their summary paper@15#, the following model was dis-
cussed:

dx5@x~12x22y2!1y~x2b!#dt1dw1 , ~1!

dy5@y~12x22y2!2x~x2b!#dt1dw2 , ~2!

where b.0, dw1 , and dw2 are uncorrelated Wiener pro
cesses satisfyinĝwi&50, ^dwidwj&5dt Dd i j . In polar co-
ordinatesx5r cosf, y5r sinf, the deterministic part of the
system can be written as

ṙ 5r ~12r 2!, ~3!

ḟ5b2r cosf. ~4!

Obviously, the loopr 51 is the global attractor of system
~3!, ~4!. By investigating~1!, ~2! for the caseb51 in detail,
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Hu et al. pointed out that SR could occur in a system th
was neither periodically forced nor bistable.

In this paper, we consider the system directly on the u
loop r 51 since the final behavior of system~1!, ~2! should
be revealed by the behavior on the attractor. The equation
considered then is

ẋ5b2sinx1DG~ t !, ~5!

whereb.0, D>0 represents the noise intensity, andG(t) is
the Gaussian white noise with zero mean and correla
given by^G(t)G(t8)&5d(t2t8). Equation~5! will be called
the noisy Langevin equation~LE!. The deterministic equa
tion corresponding to system~5! is

ẋ5b2sinx. ~6!

We plot the phase curves of system~6! for three different
values of control parameterb (b,1, b51, b.1) in Fig. 1.
For the caseb,1 @Fig. 1~a!#, the system has a stable fixe
point Sk as well as an unstable fixed pointUk in every strip
@kp,(k12)p# of x, kPZ. The threshold between these tw
points~the negative part ofb2sinx) is clear in the picture. If
we increase the control parameterb, the threshold will de-
crease correspondingly and will become marginal whenb is
increased to the value of 1@Fig. 1~b!#. In this case, there is
only one fixed pointMk , which is actually semistable rathe
than monostable in every strip@kp,(k12)p# of x. This is
just the corresponding case to model 2 in Ref.@15#. When
the control parameterb.1 @Fig. 1~c!#, the fixed point disap-
pears and no threshold exists. With the guidance of th
three pictures, it is convenient to investigate the influence
white noise on system~6!. Precise details will be given in the
later part of the article. It will be seen then that Fig. 1
essential for explaining the physical mechanism of the occ
rence of SR.

On the other hand, in dynamics, the rotation number o
system moving on a circle is an important quantity to refl
6469 ©2000 The American Physical Society
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somewhat the periodic behavior of the system. Intuitively
scales the frequency of the rotation on the circle. The rig
ous definition is

r ~b,D !5 lim
t→`

x~ t !/~2pt !. ~7!

It is known that for a deterministic circular motion the rot
tion number is exactly equal to the peak frequency of
power spectrum. So it is natural to ask what will happen i
stochastic case. In this article, we will explore the relatio
ship between these two quantities when the system is
jected to white noise.

The paper is organized as follows. In Sec. II, we elabor
the physical mechanism of the occurrence of SR in the
where three cases (b,1, b51, b.1) are investigated. Fo
the caseb,1, SR is shown by computing the average pow
spectrum as well as the SNR. The caseb51 is only slightly
touched since the results are the same as those in Ref.@15#.
Finally, it is pointed out that for the caseb.1 noise can only
distort the coherent motion that already exists in the de
ministic case and no SR exists. In Sec. III, we explore
relationships between the peak frequencies of the po
spectra and the rotation numbers for the above three ca
An empirical formula is derived to calculate the peak fr
quencies of the power spectra.

FIG. 1. b2sinx versusx for different values of control param
eterb: b,1 ~a!, b51 ~b!, b.1 ~c!.
t
r-

e
a
-
b-

te
,

r

r-
e
er
es.
-

II. PHYSICAL INVESTIGATION OF SR AND NUMERICAL
SIMULATION

In the following, we will consider the influence of whit
noise on system~6!. Here we use the power spectrum as w
as the SNR, just as in Ref.@15#, to describe the response o
the system to the added white noise. We first pay some
tention to the definition of the power spectrum.

The solution$x(t)% to system~5! is a stationary stochasti
process, the trajectory of which can be wound on the u
circle S1 by mod~2p! because of the periodicity ofb2sinx
with respect tox. So we consider as usual the power spe
trum of $sinx(t)% @equivalent to mod~2p!#. In principle, we
should write$x(t)% as $x(t,z)% since$x(t)% is a stochastic
process; here the variablez causes randomness. We set

f ~v,z!5 lim
T→`

1

T E
2T

T

eivt sinx~ t,z!dt,

Then the power spectrumS(v,z) of the system is defined a
u f (v,z)u2. However, by the ergodic theorem,f (v,z) is a
deterministic function ofv, which does not depend onz, so
we denote it asf (v). ThusS(v,z) can be denoted asS(v).
In numerical simulations, it is necessary to take the ti
series sufficiently long. Equivalently, we can take adequ
runs of time series and getS(v) as their averaged powe
spectrum. Here we take 500 runs of independent time se
$xk(t)% by a simple Euler forward procedure and calcula
the corresponding Fourier transformf̂ k(v), which is the ap-
proximation of f k(v), k51,...,500. The power spectrum w
need is then obtained as

^S~v!&5 (
k51

500

u f̂ k~v!u2/500.

A. bË1 „monostable…

Because of the periodicity ofb2sinx, system~5! can be
regarded as the dynamics of an overdamped particle mo
on a circleS1 driven by a constant force plus noise. Sin
x(t) increases wheneverb2sinx(t).0 and decreases when
everb2sinx(t),0 @see Fig. 1~a!#, the particle starting from a
certain point~say pointA between the stable fixed pointS1
and the unstable fixed pointU2) will asymptotically ap-
proachS1 . So in the deterministic case the rotation numb
is just zero. However, the situation will be completely d
ferent when noise is included. There is a nonzero probab
that the noise produces a large positive force, which he
the particle to surmount the threshold betweenS1 and U1 .
Instead of staying at the stable stateS1 , the particle first
oscillates in the neighborhood~called the attracting basin! of
this stable point for some time, depending on the intensity
the noise. Then, at a certain random time, it escapes from
attracting basin ofS1 and completes a circulation after mov
ing to S2 , which is equivalent toS1 on the circle. The posi-
tiveness ofb and the normal distribution of the noise ensu
that this process is positive recurrent. Thus noise-indu
rotations are manifested and coherent motion appears, w
can be directly seen from the nonzero rotation number. W
increase of the noise strength, such circular motion happ
more and more frequently. It is easy to imagine that
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PRE 62 6471STOCHASTIC RESONANCE ON A CIRCLE WITHOUT . . .
rotation number becomes larger and larger correspondin
but this is not the case for coherent motion, which is d
stroyed if the noise intensity is too large.

As to computer simulation, we plot the power spec
^S(v)& of the system with respect to frequencyv for b
50.98 and different values ofD in Fig. 2. For small noise, a
low spectrum peak occurs at a small frequency@Fig. 2~a!,
D50.007#. As the noise strength increases, the peak mo
toward larger frequency; meanwhile, the height of the peah
increases. At a certain value ofD ~aboutD'0.5), h reaches
a maximum@Fig. 2~b!#. Then it decreases with further in
crease of noise intensity. If the strength of the noise is s
ficiently large, no distinct peak in the power spectrum
observed@Fig. 2~c!, D51.5#. Thus the strongest cohere
oscillation happens at an intermediate value ofD.

To confirm the above phenomenon, we also plot
signal-to-noise ratiob versus log10(D) in Fig. 3. Here we
follow @15#, taking b5vph/W, wherevp is the peak fre-
quency, andW is the width of the peak at the height ofh/Ae.
The figure shows that theb-log10(D) curve is convex. In the
region of positive slope, the enhancement of the signal
noise ratio ~SNR! manifests that the coherent motion b
comes stronger asD increases. In the region with negativ
slope, the decrease ofb informs us that the noise is gradual
destroying the coherent motion as its strength increases

The fact that the quality factorb passes through a max
mum at a certain value ofD indicates the existence of a be
coherent motion, called a SR-like response since it resem
the usual SR phenomenon. Thus we confirm the result
@15# that SR can happen even in real monostable autonom
systems.

From the above analysis and computer simulation, we
that noise can induce circular rotations, the frequency
which can be reflected in both the rotation number of
system and the peak frequency of the power spectrum.
deterministic case, they are just equal. How is it in a stoch
tic case? We think that a discussion of the relationship
tween these two quantities in a white noise backgrou
should be interesting. Further studies will be given
Sec. III.

B. bÄ1 „marginally stable…

The behavior of the system in this case is just the sam
that of model 2 in Ref.@15#. The existence of a SR-like
response for this case is well shown there. We will not d

FIG. 2. The average power spectra ofx(t) for the caseb
50.98 withD50.007~a!, 0 ~b!, and 1.5~c!.
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cuss it further in this paper. Here we only briefly indicate t
physical mechanism of SR according to Fig. 1~b!. As can be
seen from the picture, whereSk andUk coincide at the point
Mk and the deterministic system is marginally stable, eve
slight perturbation can motivate the particle to move aw
from the semistable fixed pointMk (k51,2...). Under white
noise perturbation, the particle will oscillate nearM1 for
some random time before entering the neighborhood of p
M2 . So the mechanism of SR is similar to that in the ca
b,1 except that coherent motion happens much more ea
since there is no threshold for the particle to overcome.

C. bÌ1

For the deterministic case, there is no equilibrium poi
So without noise the particle is already rotating periodica
on the unit circle in one direction~suppose it is counterclock
wise!; therefore, the power spectrum is discrete.

Now, if a small noise is included, most probably it ca
produce only small forces. So the particle can still rota
counterclockwise on the circle, occasionally interrupted
the noise. However, the power spectrum becomes continu
with more than one narrow peak and the heights of the pe
are reduced@see Fig. 4~a!#. As the value ofD becomes big-
ger, the counterclockwise rotation is disturbed more stron
by the noise, the effect of which is especially clear near
minimum pointsN1 ,N2 ,... of thephase curve. In the profile
of the power spectrum, only one peak with wider width a

FIG. 3. The signal-to-noise ratiob against log10 (D) for the case
b50.98, SR can be seen clearly.

FIG. 4. The average power spectra ofx(t) for the casesb
51.05 withD50.005~a!, 0.5 ~b!, and 1.7~c!.
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larger frequency appears@Fig. 4~b!#. This indicates that the
noise is gradually destroying the coherent motion displa
in the deterministic case. If the noise intensity is sufficien
large, the peak becomes ambiguous@Fig. 4~c!#, which means
that the system is completely dominated by the noise.

Since the influence of the noise can be seen more cle
in the SNR, we plot this quality factorb of the system
against log10(D) in Fig. 5. When noise is included, the widt
of the peak is no longer zero and the quality factorb is
reduced to a finite value; in fact, it decreases to zero if
value ofD is large enough. This means that no SR occurs
this case.

III. RELATIONSHIP BETWEEN PEAK FREQUENCY
AND ROTATION NUMBER

Now let us explore the relationship between the peak
quencyvp of the power spectrum and the rotation numb
r (b,D) of the system. According to the definition@Eq. ~7!#,
the rotation numberr (b,D) should depend on the trajector
in a stochastic situation. However, the system we discus
here proves to be an ergodic stationary stochastic proces
r (b,D) is independent of the trajectory. In a numerical sim
lation, instead of taking a long time series, we can take
equate trajectories~here we take 500 runs!, and calculate the
average rotation number. In fact, in the Appendix, we obt
an analytic formula for the rotation number which is ind
pendent of the trajectory of system~5! ~for more detail, see
Ref. @16#!. This formula is also used in calculatingr (b,D),
which shows good agreement with the result from Eq.~7!.

A. bË1

In Fig. 6~a!, we plot the peak frequencyvp of the power
spectrum and the rotation numberr (b,D) of the system ver-
sus log10(D) ~solid line and dashed line, respectively!. From
the profiles, we can see thatvp and r (b,D) both increase
monotonically with the increase of noise strength untilvp
reaches a maximum. In this region, the peak frequencyvp is
bigger than the rotation numberr (b,D), but if we further
increaseD, the rotation numberr (b,D) still increases while
the peak frequencyvp becomes indeterminable since th
peak of the power spectrum is not obvious.

Now the question arising here is what causes such a r
tionship between the peak frequencyvp and the rotation
number r (b,D)? We focus on the value ofD where the

FIG. 5. The signal-to-noise ratiob against log10(D) for the case
b51.05. No SR occurs.
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quality factorb is not too small. From the analysis for the
caseb,1 in Sec. II, we know that, if noise is included, the
particle will oscillate near every identical stable fixed point
Sk (kPZ) of the phase curve for some time. By investigating
the stochastic orbits@here we consider the time series of
$sinx(t)%# of the system, we find that, excluding wandering in
the attracting basin, the remaining motion of the particle is
nearly periodic~see Fig. 7!. We assert that this remaining
motion outside the attracting basin mainly determines th
peak frequency. However, according to definition~7!, the
calculation of the rotation number should include the time
spent oscillating near the stable fixed points. So the rotatio
numberr (b,D) is smaller than the peak frequencyvp if the
noise strength is not too large.

To make the above judgment clearer, denoteT as the total
time for the particle to move on the unit circle andT0 as the
time the particle moves outside the attracting basin. The
Tr(b,D) counts the total number of times that the particle
rotates around the circle, soTr(b,D)/T0 counts the fre-
quency of the particle moving outside the attracting basin

FIG. 6. The peak frequencyvp , the calculated frequencyvC ,
and the rotation numberr (b,D) against log10(D) for different val-
ues ofb: b50.98 ~a!, b51 ~b!, b51.05 ~c!.
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denotedvc . Comparing this frequencyvc with the peak
frequencyvp of the power spectrum, we found them to be
good agreement. The relative erroruvp2vcu/vp is about 6%
@see solid line and little dots in Fig. 6~a!#. Here the sample
points ofD are taken between 0.1 and 0.8 with step 0.1.
we get an empirical formula to calculate the peak freque
of the power spectrum, that is,

vp'vc , i.e., vp'Tr~b,D !/T0 . ~8!

We call vc the calculated frequency of the power spectru
According to formula~8!, we have reason to say that th
motion excluding the oscillations near the stable po
mainly determines the peak frequency of the power sp
trum.

B. bÄ1

For this case we know that if noise is included, in eve
circulation, the particle has to spend some random time
cillating near the semistable fixed point. So for not too lar
values ofD the rotation numberr (b,D) is also smaller than
the peak frequencyvp . But, since the threshold is margina
the time the particle spends wandering in the neighborh
of the semistable fixed point is relatively short in contrast
the caseb,1. Thus the rotation numberr (b,D) and the
peak frequencyvp are more similar than that in the caseb
,1 @see solid line and dashed line in Fig. 6~b!#. After cal-
culating the value ofTr(b,D)/T0 , we see that the empirica
formula ~8! still holds for this case@see solid line and little
dots in Fig. 6~b!#.

C. bÌ1

The relationship betweenvp andr (b,D) in this case can
be seen clearly from the solid line and dashed line in F
6~c!. For small values ofD, the rotation numberr (b,D)
agrees with the peak frequencyvp well because the force
produced by the noise can seldom prevent the particle f
rotating counterclockwise. If the noise intensity increas
the particle will also oscillate near the minimum poin
N1 ,N2 ,... of thephase curve for some random time. Th
the relationship betweenvp andr (b,D) is similar to that in
the casesb,1 andb51 except that the two curves show
much better degree of similarity. Moreover, the formula~8!
remains correct@see solid line and little dots in Fig. 6~c!#.

FIG. 7. The time series of$sinx(t)% versust for b50.98 and
D50.4. The motion of the particle oscillating near the stable po
as well as outside the attracting basin can be clearly seen.
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IV. CONCLUSIONS

First, SR-like phenomena are manifested for the caseb
,1 andb51. From the figures, the height of the peak a
the signal-to-noise ratio go through a process of first incre
ing and then decreasing. However, for the caseb.1, these
two quantities always decrease with increasing no
strength. From this point of view, the SR-like response d
not exist for the caseb.1. Thus we confirm the results in
@15# that SR exists even in real monostable autonomous
tems without periodic excitation; this is the caseb,1. More-
over, we point out that when the control parameterb.1
noise can play only a negative role, and no SR exists.

Secondly, noise breaks the equality between the peak
quencyvp and the rotation numberr (b,D), which holds in
the deterministic case. Actually, the rotation number
smaller than the peak frequency for not too large a value
D. This is because, in the presence of noise, irregular mo
ment in the neighborhood of stable equilibrium pointsb
,1) or of minimum points (b.1, b51) of the phase curve
occupies a certain time. Furthermore, an empirical formul
derived to show the relationship between these two qua
ties.

Thirdly, from the empirical formula, we can also give a
explanation of the peak frequency. It is mainly determin
by the motions of the particle outside the attracting bas
(b,1) or outside the neighborhood of the minimum point~
b.1, b51) of the phase curve.

Finally, we want to point out that, although the empiric
formula shows good agreement with results of numeri
simulations, a mathematical demonstration is needed, b
is not easy to give it.

APPENDIX

We define the rotation numberr (b,D) as Eq.~7!. As for
the LE ~5!, the solution$x(t),t>0%(mod2p) is a positive
recurrent diffusion process on the unit circle and there i
unique invariant distribution. The infinitesimal generator
$x(t),t>0% is

L f 5
D2

2

d2

dx2 f ~x!1
d

dx
@~b2sinx! f ~x!#.

By the Birkhoff ergodic theorem

r ~b,D !5 lim
t→`

x~ t !

2pt

5
1

2pT
lim

T→`
H E

0

T

@b2sinx~s!#ds1bw~T!J
5

1

2p E
0

2p

~b2sinx!n~x!dx,

wheren(x) is the unique stationary density solution to th
Fokker-Planck equation related to the LE system:

]n

]t
5

b2

2

]2n

]x22
]

]x
@~b2sinx!n#, n~x,t !5n~x12p,t !.

Let

t
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w~x!5
2

D2 exp@ f ~x!#H E
0

x

exp@2 f ~s!#ds

1E
x

2p

expS 2 f ~s!2
4pb

D2 DdsJ ,

iw~x!i5E
0

2p

w~x!dx,
on

s

S

where f (x)5bx1cosx21. Then n(x)5w(x)/iw(x)i , and
we get

r ~b,D !5@exp~4pb/D2!21#/iw~x!i .

By further calculation, we can prove mathematically th
r (b,D) is monotonic withD and has a bounded limit whe
D tends to infinity.
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