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Stochastic resonance on a circle without excitation: Physical investigation
and peak frequency formula
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In this article the existence of stochastic resona(®®) without external force in a simplified circular
system for different values of the control paramdtés considered. The average power spectra are calculated
as well as the signal-to-noise ratio as a measure for stochastic resonance. It is shown that in the monostable and
semistable <1 andb=1) cases coherent oscillations occur and SR exists. For thebcasethe system is
oscillatory and noise plays only a destructive role; therefore no SR occurs. The rotation number of the system
is calculated and compared to the peak frequency of the power spectrum. Although the coincidence in the noisy
case is not as good as that in the deterministic case, we can derive an empirical formula between the peak
frequency of the power spectrum and the rotation number of the system, which is in good agreement with
results of numerical simulations.

PACS numbds): 05.40—a

[. INTRODUCTION Hu et al. pointed out that SR could occur in a system that
was neither periodically forced nor bistable.
Research concerning stochastic resonan&&®) has In this paper, we consider the system directly on the unit

aroused more and more interest recently in both physics arldop r=1 since the final behavior of systeft), (2) should
nonlinear sciencésee reviewq1,2]). Stochastic resonance be revealed by the behavior on the attractor. The equation we
means that the response of a nonlinear system to a periodionsidered then is

signal may be enhanced by an optimal amount of noise. The

models investigated in the literature were mainly bistable X=Db—sinx+DI'(t), )
ones with extra periodic driving forcg8—13]. Recently,

some authors found that pure noise could also lead to a maxivhereb>0, D=0 represents the noise intensity, dng) is
mum signal-to-noise ratiéSNR) at a certain critical noise the Gaussian white noise with zero mean and correlation
strength. This phenomenon is called stochastic resonangiven by(I'(t)I'(t"))=&(t—t"). Equation(5) will be called
without excitation[14,15. After considering the SR phe- the noisy Langevin equatio(LE). The deterministic equa-
nomenon in bistable systems without excitation, Hu and cotion corresponding to syste(b) is

workers investigated a system that was not bistable and con-

cluded that bistability was not a necessary ingredient for SR. X=b—sinx. (6)
In their summary pap€drl5], the following model was dis-
cussed: We plot the phase curves of systé@) for three different
values of control parametér (b<1,b=1,b>1) in Fig. 1.
dx=[x(1—x?>—y?)+y(x—b)]dt+dw,, ) For the casd<1 [Fig. 1(a)], the system has a stable fixed
point S, as well as an unstable fixed poidy, in every strip
dy=[y(1—x2—y?)—x(x—b)]dt+dw,, ) [k, (k+2)7] of x, ke Z. The threshold between these two

points(the negative part dd—sinx) is clear in the picture. If
we increase the control parameterthe threshold will de-
crease correspondingly and will become marginal whés
increased to the value of [Fig. 1(b)]. In this case, there is
only one fixed pointMM,, which is actually semistable rather
than monostable in every strikm, (k+2)#] of x. This is
P=r(1-r?) 3) just the corresponding case to model 2 in R&6]. When
' the control parametds>1 [Fig. 1(c)], the fixed point disap-
. pears and no threshold exists. With the guidance of these
¢=b—r cosg. (4)  three pictures, it is convenient to investigate the influence of
white noise on systelt6). Precise details will be given in the
Obviously, the loopr=1 is the global attractor of system later part of the article. It will be seen then that Fig. 1 is
(3), (4). By investigating(1), (2) for the caséb=1 in detail, essential for explaining the physical mechanism of the occur-

whereb>0, dw,;, anddw, are uncorrelated Wiener pro-
cesses satisfyingw;) =0, (dw;dw;)=dt D§;; . In polar co-
ordinatesx=r cos¢, y=r sin ¢, the deterministic part of the
system can be written as

rence of SR.
On the other hand, in dynamics, the rotation number of a
*Email address: zxjsx@263.net system moving on a circle is an important quantity to reflect
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Il. PHYSICAL INVESTIGATION OF SR AND NUMERICAL

(@) SIMULATION
7 ] In the following, we will consider the influence of white
\\ : noise on systen®). Here we use the power spectrum as well
as the SNR, just as in R€f15], to describe the response of
S’\g’/w 8. ", the system to the added white noise. We first pay some at-
‘ } ‘ ‘ tention to the definition of the power spectrum.
0 2 4 6 8 10 The solution{x(t)} to system(5) is a stationary stochastic
< process, the trajectory of which can be wound on the unit
circle St by mod2#) because of the periodicity df—sinx
with respect tox. So we consider as usual the power spec-
trum of {sinx(t)} [equivalent to mod2m)]. In principle, we
should write{x(t)} as{x(t,{)} since{x(t)} is a stochastic
process; here the variablecauses randomness. We set

b-sinx

0

-1

b-sinx

— i 1 Tot of
f(w,)=lim ?ﬁTe sinx(t,¢)dt,

T—x

Then the power spectru®(w, ) of the system is defined as
|f(w,£)|?. However, by the ergodic theorem(w,?{) is a
deterministic function ofv, which does not depend af) so

we denote it ag(w). ThusS(w,{) can be denoted & w).

In numerical simulations, it is necessary to take the time
series sufficiently long. Equivalently, we can take adequate
runs of time series and g&(w) as their averaged power
spectrum. Here we take 500 runs of independent time series
{xk(t)} by a simple Euler forward procedure and calculate
the corresponding Fourier transfori( ), which is the ap-
proximation off,(w), k=1,...,500. The power spectrum we
need is then obtained as

b-sinx

500
FIG. 1. b—sinx versusx for different values of control param- (S(w))= 2 |fk(w)|2/500-
eterb: b<1 (a), b=1 (b), b>1 (c). k=1

somewhat the periodic behavior of the system. Intuitively, it

. . : A. b<1 (monostable
scales the frequency of the rotation on the circle. The rigor-

ous definition is Because of the periodicity df—sinx, system(5) can be
regarded as the dynamics of an overdamped particle moving
r(b,D)=lim x(t)/(2mt). (77 ona circleSt driven by a constant force plus noise. Since
t—oo X(t) increases whenevér—sinx(t)>0 and decreases when-

everb—sinx(t)<0 [see Fig. 1a)], the particle starting from a
It is known that for a deterministic circular motion the rota- certain point(say pointA between the stable fixed poif
tion number is exactly equal to the peak frequency of theand the unstable fixed poirt,) will asymptotically ap-
power spectrum. So it is natural to ask what will happen in goroachS;. So in the deterministic case the rotation number
stochastic case. In this article, we will explore the relation-is just zero. However, the situation will be completely dif-
ship between these two quantities when the system is sulberent when noise is included. There is a nonzero probability
jected to white noise. that the noise produces a large positive force, which helps

The paper is organized as follows. In Sec. |, we elaboratehe particle to surmount the threshold betwexnand U, .

the physical mechanism of the occurrence of SR in the LEInstead of staying at the stable sta#e, the particle first
where three casedv 1, b=1, b>1) are investigated. For oscillates in the neighborhoddalled the attracting basiof
the caséd <1, SR is shown by computing the average powerthis stable point for some time, depending on the intensity of
spectrum as well as the SNR. The casel is only slightly  the noise. Then, at a certain random time, it escapes from the
touched since the results are the same as those ifB&f.  attracting basin of; and completes a circulation after mov-
Finally, it is pointed out that for the cage>1 noise canonly ing to S,, which is equivalent t&; on the circle. The posi-
distort the coherent motion that already exists in the detertiveness ot and the normal distribution of the noise ensure
ministic case and no SR exists. In Sec. lll, we explore thehat this process is positive recurrent. Thus noise-induced
relationships between the peak frequencies of the powewntations are manifested and coherent motion appears, which
spectra and the rotation numbers for the above three casesan be directly seen from the nonzero rotation number. With
An empirical formula is derived to calculate the peak fre-increase of the noise strength, such circular motion happens
guencies of the power spectra. more and more frequently. It is easy to imagine that the
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FIG. 2. The average power spectra xft) for the caseb FIG. 3. The signal-to-noise ratjf against log, (D) for the case
=0.98 withD=0.007(a), 0 (b), and 1.5(c). b=0.98, SR can be seen clearly.

rotation number becomes larger and larger correspondingly,

but this is not the case for coherent motion, which is de-CuSS it further in this paper. Here we only briefly indicate the

stroyed if the noise intensity is too large. physical mechapism of SR according to_ Fi_g))l As can l:_)e

As to computer simulation, we plot the power spectraS€en from the picture, whe& andU, coincide at the point
(S(w)) of the system with respect to frequenay for b M and the deterministic system is marginally stable, even a
—0.98 and different values d in Fig. 2. For small noise, a slight perturbation can motivate the particle to move away

low spectrum peak occurs at a small frequefiig. 2(a), fro.m the semistfable fixed po?er (k.=1,2....). Under white
D=0.007. As the noise strength increases, the peak move80iSe perturbation, the particle will oscillate nelslr; for

toward larger frequency; meanwhile, the height of the geak SCMe random time bfefore enteri.ng 'Fhe. neighborhpod of point
increases. At a certain value bf (aboutD~0.5), h reaches Mz SO the mechanism of SR is similar to that in the case
a maximum[Fig. 2(b)]. Then it decreases with further in- b_<1 except_that coherent motion happ_ens much more easily
crease of noise intensity. If the strength of the noise is sufSINCe there is no threshold for the particle to overcome.
ficiently large, no distinct peak in the power spectrum is

observed[Fig. 2(c), D=1.5]. Thus the strongest coherent C.b>1

oscillation happens at an intermediate valueDof For the deterministic case, there is no equilibrium point.

To confirm the above phenomenon, we also plot theso without noise the particle is already rotating periodically
signal-to-noise ratig versus logg(D) in Fig. 3. Here we  on the unit circle in one directiofsuppose it is counterclock-
follow [15], taking 8= w,h/W, where w, is the peak fre-  ise); therefore, the power spectrum is discrete.
quency, andV is the width of the peak at the heightlof/e. Now, if a small noise is included, most probably it can
The figure shows that theé-log,o(D) curve is convex. Inthe produce only small forces. So the particle can still rotate
region of positive slope, the enhancement of the signal-toeounterclockwise on the circle, occasionally interrupted by
noise ratio(SNR) manifests that the coherent motion be- the noise. However, the power spectrum becomes continuous
comes stronger ab increases. In the region with negative with more than one narrow peak and the heights of the peaks
slope, the decrease gfinforms us that the noise is gradually are reducedisee Fig. 4a)]. As the value oD becomes big-
destroying the coherent motion as its strength increases. ger, the counterclockwise rotation is disturbed more strongly

The fact that the quality factg8 passes through a maxi- by the noise, the effect of which is especially clear near the
mum at a certain value d@ indicates the existence of a best minimum pointsN;,N,,... of thephase curve. In the profile
coherent motion, called a SR-like response since it resemblesf the power spectrum, only one peak with wider width and
the usual SR phenomenon. Thus we confirm the results in
[15] that SR can happen even in real monostable autonomous
systems.

From the above analysis and computer simulation, we see
that noise can induce circular rotations, the frequency of
which can be reflected in both the rotation number of the
system and the peak frequency of the power spectrum. In a
deterministic case, they are just equal. How is it in a stochas-
tic case? We think that a discussion of the relationship be-
tween these two quantities in a white noise background
should be interesting. Further studies will be given in
Sec. Ill.

B. b=1 (marginally stable)

The behavior of the system in this case is just the same as
that of model 2 in Ref[15]. The existence of a SR-like FIG. 4. The average power spectra xfit) for the casesb
response for this case is well shown there. We will not dis-=1.05 withD=0.005(a), 0.5 (b), and 1.7(c).
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FIG. 5. The signal-to-noise ratj against logy(D) for the case 0.2 —
b=1.05. No SR occurs. solid line-g (b)
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. P S 95 gashed line~r(b,D) .
larger frequency appeaf§ig. 4(b)]. This indicates that the =1 ’
noise is gradually destroying the coherent motion displayet & o¢.1
in the deterministic case. If the noise intensity is sufficiently &
large, the peak becomes ambigudBig. 4(c)], which means 0.05}
that the system is completely dominated by the noise.
Since the influence of the noise can be seen more clear! 05 » : : : :
in the SNR, we plot this quality factoB of the system ) 3 2 -1 0 ! 2
against logy(D) in Fig. 5. When noise is included, the width log.. (D)
of the peak is no longer zero and the quality fac®is 1
reduced to a finite value; in fact, it decreases to zero if the 0.2
vglue ofD is large enough. This means that no SR occurs ir 1 solid line~q ©)
this case. 8 g5 little dot—g, S
0 .
= dashed line--r(b,D)
I1l. RELATIONSHIP BETWEEN PEAK FREQUENCY @:" 01t
AND ROTATION NUMBER sh
I —————M
Now let us explore the relationship between the peak fre 0.05
quencyw, of the power spectrum and the rotation number 0

r(b,D) of the system. According to the definitidkq. (7)], 5 -:‘1 3 2 ¥ 6 1 2
the rotation number(b,D) should depend on the trajectory

in a stochastic situation. However, the system we discusse
here proves to be an ergodic stationary stochastic process, so
r(b,D) is independent of the trajectory. In a numerical simu-  F!G- 6. The peak frequenay,,, the calculated frequenayc,
lation, instead of taking a long time series, we can take ag@"d the rotation number(b,D) against log(D) for different val-
equate trajectoriedhere we take 500 rupsand calculate the Ues ofb: b=0.98(a), b=1 (b), b=1.05(c).

average rotation number. In fact, in the Appendix, we obtain . .

an analytic formula for the rotation number which is inde- duality factor 8 is not too small. From the analysis for the
pendent of the trajectory of systef8) (for more detail, see CcaS€b<1 in Sec. Il, we know that, if noise is included, the
Ref. [16]). This formula is also used in calculatimgb,D) particle will oscillate near every identical stable fixed point

which shows good agreement with the result from &9. Sk (ke Z) of t.he ph{;\se curve for some time. By investi'gating
the stochastic orbit§here we consider the time series of

{sinx(t)}] of the system, we find that, excluding wandering in
the attracting basin, the remaining motion of the particle is
nearly periodic(see Fig. 7. We assert that this remaining
motion outside the attracting basin mainly determines the
peak frequency. However, according to definitiof), the
calculation of the rotation number should include the time
spent oscillating near the stable fixed points. So the rotation
numberr (b,D) is smaller than the peak frequenay if the

log,e (D)

A. b<1

In Fig. 6@, we plot the peak frequenay,, of the power
spectrum and the rotation numbeib,D) of the system ver-
sus logy(D) (solid line and dashed line, respectivelifrom
the profiles, we can see thai, andr(b,D) both increase
monotonically with the increase of noise strength untj
reaches a maximum. In this region, the peak frequengis
bigger than the rotation numbefb,D), but if we further noise strength is not too large.
increaseD, the rotation number(b,D) still increases while To make the above judgment clearer, deroses the total
the peak frequency», becomes indeterminable since the time for the particle to move on the unit circle aig as the
peak of the power spectrum is not obvious. time the particle moves outside the attracting basin. Then

Now the question arising here is what causes such a reld&r(b,D) counts the total number of times that the particle
tionship between the peak frequenay, and the rotation rotates around the circle, sbr(b,D)/T, counts the fre-
numberr(b,D)? We focus on the value dd where the quency of the particle moving outside the attracting basin,
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IV. CONCLUSIONS

First, SR-like phenomena are manifested for the céses
<1 andb=1. From the figures, the height of the peak and
the signal-to-noise ratio go through a process of first increas-
ing and then decreasing. However, for the chsel, these
two quantities always decrease with increasing noise
strength. From this point of view, the SR-like response does
not exist for the casé>1. Thus we confirm the results in
[15] that SR exists even in real monostable autonomous sys-
tems without periodic excitation; this is the cds€ 1. More-

sinx

460 480 500 520 540 560 580

¢ over, we point out that when the control parameter 1
noise can play only a negative role, and no SR exists.
FIG. 7. The time series ofsinx(t)} versust for b=0.98 and Secondly, noise breaks the equality between the peak fre-
D=0.4. The motion of the particle oscillating near the stable pomtquencywp and the rotation numbet(b,D), which holds in
as well as outside the attracting basin can be clearly seen. the deterministic case. Actually, the rotation number is

) ) ) smaller than the peak frequency for not too large a value of
denotedw.. Comparing this frequency. with the peak p This is because, in the presence of noise, irregular move-
frequencyw,, of the power spectrum, we found them to be in yent in the neighborhood of stable equilibrium points (
good agreement. The relative erfar, — wo|/w is about 6% 1) or of minimum points b>1, b=1) of the phase curve
[see solid line and little dots in Fig.(®]. Here the sample ccupies a certain time. Furthermore, an empirical formula is

points of D are taken between 0.1 and 0.8 with step 0.1. SQjerived to show the relationship between these two quanti-
we get an empirical formula to calculate the peak frequencyjeg.

of the power spectrum, that is, Thirdly, from the empirical formula, we can also give an
- : - explanation of the peak frequency. It is mainly determined
@p=we, 1€, op=Tr(b,D)/To. ® by the motions of the particle outside the attracting basins

We call w,, the calculated frequency of the power spectrum.(P<1) or outside the neighborhood of the minimum points

According to formula(8), we have reason to say that the P~ 1, P=1) of the phase curve. .
motion excluding the oscillations near the stable point Finally, we want to point out that, although the empirical

mainly determines the peak frequency of the power specf-(_)rmma_ shows good ag_reement with r_esul_ts of numerical_
trum. simulations, a mathematical demonstration is needed, but it

is not easy to give it.

B.b=1
APPENDIX

For this case we know that if noise is included, in every i .
circulation, the particle has to spend some random time os- We define the rotation numbe(b,D) as Eq.(7). As for
cillating near the semistable fixed point. So for not too largethe LE (5), the solution{x(t),t=0}(mod2m) is a positive
values ofD the rotation number(b,D) is also smaller than recurrent diffusion process on the unit circle and there is a
the peak frequency, . But, since the threshold is marginal, Unique invariant distribution. The infinitesimal generator of

the time the particle spends wandering in the neighborhooélx(t)izo} is

of the semistable fixed point is relatively short in contrast to 2 d
the caseb<<1. Thus the rotation numbear(b,D) and the |_f:7d_2f(x)+d_[(b_sinx)f(x)]_
X X

peak frequencyn, are more similar than that in the calse
<1 [see solid line and dashed line in Figbg. After cal-

culating the value off r(b,D)/T,, we see that the empirical By the Birkhoff ergodic theorem

formula (8) still holds for this casg¢see solid line and little Cx(b)
dots in Fig. §b)]. r(b,D)=tIEr;2—7Tt
C.b>1 1 -
The relationship between, andr (b,D) in this case can = ZWTTlm[ fo [b—sinx(s)]ds+bw(T)
be seen clearly from the solid line and dashed line in Fig.
6(c). For small values oD, the rotation number(b,D) 1 (2= )
agrees with the peak frequenay, well because the forces “27 ), (b—sinx) »(x)dx,

produced by the noise can seldom prevent the particle from

rotating counterclockwise. If the noise intensity increaseswhere (x) is the unique stationary density solution to the

the particle will also oscillate near the minimum points Egkker-Planck equation related to the LE system:
N1,N,,... of thephase curve for some random time. Thus

the relationship between, andr(b,D) is similar to that in v b? ¢

the caseb<1 andb=1 except that the two curves show a 5t ~ 2 gx2 &[
much better degree of similarity. Moreover, the form(8a

remains correcfsee solid line and little dots in Fig(&]. Let

(b=sinx)v], v(x,t)=v(x+2m,t).
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2 X where f(x) =bx+ cosx—1. Then »(x) =w(x)/[|w(x)||, and
W(x)= Szexlif(x)][ fo exd —f(s)]ds we get
+J2”exp(_f(s)_@>ds} r(b,D)=[exp(4mb/D?)~ 1]/ w(x)].
X D ’

) By further calculation, we can prove mathematically that
||W(X)||=f ﬂw(x)dx r(b,D) is monotonic withD and has a bounded limit when
0 ’ D tends to infinity.

[1] A. R. Bulsara and L. Gammaitoni, Phys. Tod49 (3), 39 656 (1991).
(1996; J. Stat. Phys70, 1 (1993; L. Gammaitoni, P. Hanggi,  [9] G. Hu, H. Haken, and C. Z. Ning, Phys. Rev.&, 2321
P. Jung, and F. Marchesoni, Rev. Mod. Ph§@. 223 (1998. (1993.

[2] K. Wiesenfeld and F. Moss, Natufeondon 373 33 (1995; [10] R. Li, G. Hu, C. Y. Yang, X. D. Wen, G. R. Qing, and H. J.
F. Moss, D. Pierson, and D. O. Gorman, Int. J. Bifurcation Zhu, Phys. Rev. 51, 3964(1995.

Chaos Appl. Sci. Engd, 1383(1994. [11] A. R. Bulsara, T. C. Elston, C. R. Doering, S. B. Lowen, and
[3] R. Benzi, A. Sutera, and A. Vulpiani, J. Phys. 1A, L453 K. Lindenberg, Phys. Rev. B3, 3958(1996.
(1981); R. Benzi, G. Parisi, A. Sutera, and A. Vulpiani, Tellus [12] M. E. Inchiosa, A. R. Bulsara, and L. Gammaitoni, Phys. Rev.
34, 10(1982. E 55, 4049(1997).
[4] C. Nicolis and G. Nicolis, Tellu$3, 225(1981); C. Nicolis, [13] M. H. Choi, R. F. Fox, and P. Jung, Phys. Rev5E 6335
ibid. 34, 1 (1982; (1998.
[5] R. Fox, Phys. Rev. /89, 4148(1989. [14] G. Hu, T. Ditzinger, C. Z. Ning, and H. Haken, Phys. Rev.
[6] L. Gammaitoni, F. Marchesoni, E. Menichella-Saetta, and S. Lett. 71, 807 (1993.
Santucci, Phys. Rev. Letb2, 349(1989. [15] T. Ditzinger, C. Z. Ning, and G. Hu, Phys. Rev.38, 3508
[7] G. Hu, G. Nicolis, and C. Nicolis, Phys. Rev. 42, 2030 (1994.
(1990. [16] D. Wang, S. Zhu, and M-P. Qiang, Comm. Nonlin. Sci. Num.

[8] A. Longtin, A. R. Bulsara, and F. Moss, Phys. Rev. Léf, Simu. 2, 91 (1997).



